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Generally, the transport of gases and vapors in nuclear materials is adequately described by the diffusion
equation with an effective diffusion coefficient. There are instances however, in which the flow pathway
can be so restrictive that the diffusion description has limitations. In general, molecular transport is gov-
erned by intermolecular forces and collisions (interactions between multiple gas/vapor molecules) and
by molecule–surface interactions. However, if nano-scale pathways exist within these materials, as has
been suggested, then molecular transport can be characterized as being in the free-molecular flow regime
where intermolecular interactions can be ignored and flow is determined entirely by molecule–surface
collisions. Our purpose in this investigation is to focus on free-molecular transport in fine capillaries of
a range of shapes and to explore the effect of geometry on this transport. We have employed Monte Carlo
techniques in our calculations, and for simple geometries we have benchmarked our results against some
analytical and previously available results. We have used Mathematica� which has exceptional built-in
symbolic and graphical capabilities, permitting easy handling of complicated geometries and good visu-
alization of the results. Our computations provide insights into the role of geometry in molecular trans-
port in nuclear materials with narrow pathways for flows, and also will be useful in guiding computations
that include intermolecular collisions and more realistic gas–surface collision operators.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

The transport of gases and volatile compounds within and
through nuclear and non-nuclear materials used in various nuclear
facilities is of great interest in the containment of radioactive con-
tamination. Generally this transport is adequately described by the
diffusion equation with an effective diffusion coefficient being
determined with empirical methods [1–4]. There are instances
however, where the diffusion description has limitations. Such
cases occur when the flow pathways through which gases and va-
pors are moving are so narrow that the interactions of molecules
with the pathway walls are as or more important than intermolec-
ular interactions. Although such circumstances are extreme, there
are opportunities for them to occur in transport through many
media such as nuclear fuels, cladding and coating materials, graph-
ite, rocks, and soil.

In most cases involving materials used in nuclear facilities,
species of interest are transported either via solid-state diffusion,
or gas phase diffusion and/or convection. However, in a few cases,
either the known diffusion and/or convection models fail to ade-
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quately describe experimental data, or actual structures in trans-
port media are observed that suggest that continuum transport is
questionable. In the first case, traditional models of transport
through urania fuel could not properly account for experimental
results [5–7]. Additionally, recent experimental studies with re-
spect to transport through silicon carbide coatings [8,9] have sug-
gested that the diffusion equation may be limited in specific
circumstances. In the second case, material studies [10–18] have
indicated that in some circumstances, physical conditions exist
in which the diffusion description cannot be easily applied since
the mean free path of molecules is comparable to a characteristic
dimension of the flow (pore or crack radius). In these cases,
neither solid-state nor gaseous diffusion is dominant, thus limit-
ing the usefulness of standard diffusion coefficients. An explicit
example of such a circumstance is the reported presence of cracks
with a mean width of 25 nm in nuclear graphite [11,12]. Some
of these cracks are identified with widths as small as 5 nm. In
order for continuum conditions for transport to exist in such
circumstances, the ratio of the mean free path to the crack width
should be less than 0.1. The mean free path of gases is determined
by [19].

k ¼ kBTffiffiffi
2
p

pr2p
ð1Þ

where k is the mean free path, kB is the Boltzmann constant, T is the
absolute temperature, r is the molecular diameter, and p is the
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Fig. 1. Representation of a case in which traditional diffusion is described by Eqs.
(3)–(5). In this case, species A (small particles) is diffusing from left to right through
species B (large particles). The system is enclosed by a third material, species C,
which is represented by the brick-like pattern.
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pressure. In order for continuum conditions to exist and associated
equations to apply in a 5-nm crack, the mean free path must be less
than 0.5 nm. Molecular diameters of interest are commonly on the
order of 0.3 nm [20]. According to Eq. (1), at standard atmospheric
conditions, the mean free path of a gas with a molecular diameter of
0.3 nm is 101.5 nm – making the ratio of the mean free path to the
crack radius 4.1 for a crack with a radius of 25 nm or 20.3 for a crack
with a radius of 5 nm. Thus, for the cracks described above at stan-
dard atmospheric conditions, gas and vapor transport cannot be de-
scribed by continuum conditions and the associated diffusion
equation. If the system described above had a temperature of
700 K and a pressure of 10 MPa, then the mean free path of the
gas would be 2.4 nm which is still larger than the required mini-
mum of 0.5 nm.

Generally, fine pathways on the nano-scale do not occur indi-
vidually, but in vast arrays. This brings about the question as to
whether or not the transport of gases and vapors through these ar-
rays may be described with Darcy’s Law

Q ¼ �jA
l

DP
DL

ð2Þ

where j is the permeability of the porous medium, A is the cross-
sectional area for flow, l is the viscosity of the vapor or gas that
is flowing, DP is the change in pressure across the medium, and
DL is the thickness of the medium. However, Darcy’s Law applies
exclusively to viscous convective flow through a porous medium.
In the fine capillary pathways currently being discussed, neither
viscous nor convective flow is occurring. Instead, transport is lar-
gely being controlled by random thermal motion of the gas or vapor
species undergoing transport and by the interaction of these species
with pathway walls. As will be shown in this work, for free-molec-
ular flow in fine capillary pathways, a variable W that is analogous
to the parameter j in Darcy’s Law can be used to characterize the
transport through the pathways. Both parameters function to ac-
count for pathway geometry.

As the ratio of the mean free path of the gas or vapor to the
crack ratio increases above 0.1, the transition flow regime exists
in which molecule–wall collisions become more important and
intermolecular collisions become less important. In cases where
the ratio of the mean free path to the crack radius is greater than
10, the free-molecular flow regime exists in which intermolecular
interactions can be completely neglected. As the free-molecular
flow regime is not concerned with intermolecular interactions,
modeling of free-molecular transport can be achieved through a
Monte Carlo simulation in which molecules travel along straight
trajectories between collisions with walls. We should note that
even in this regime, computation of the transport is complicated
by a general lack of knowledge with respect to the nature of gas–
surface collisions (accommodation, condensation coefficients,
adsorption, etc.) as well as the geometry of pores and cracks. These
complications dictate that computations capable of keeping good
fidelity to the actual physical/chemical processes are still some
years away.

Our purpose in this investigation is to focus on the free-molec-
ular transport in fine capillaries of a range of shapes and explore
the effect of the geometry on this transport. We have used the
Monte Carlo method, and for simple geometries benchmarked
our results against some analytical and previously available re-
sults. We have used Mathematica� due to its exceptional built-
in symbolic and graphical capabilities, permitting easy handling
of complicated geometries and good visualization of the results.
Our computations provide insights into the role of geometry in
molecular transport in nuclear materials with narrow pathways
for flows, and also will be useful in guiding computations that
include intermolecular collisions and more realistic gas–surface
collision operators. We should also note that while we have
focused here on mass transport, somewhat similar consideration
would apply to thermal transport as well.
2. Theory

As mentioned in the introduction, it is common to mathemati-
cally describe the movement of materials through fuel matrices
and containment materials with a diffusion equation [1,19]

@CAðr; tÞ
@t

¼ DABr2CAðr; tÞ þ SAðr; tÞ ð3Þ

where CA represents the concentration of the species that is consid-
ered to be diffusing, B is the substance through which species A is
diffusing, SA is the rate of generation by any means of the diffusing
species, and DAB is the ‘‘diffusivity” or diffusion coefficient that
quantifies the rate of diffusion of species A through species B
(assumed uniform). We should note that the diffusion coefficient
DAB is specifically applicable to a binary diffusion problem (for more
complicated problems involving multi-component gas phase trans-
port, a Stefan-Maxwell treatment would be required [19]).

For future discussion it is convenient for us to write Eq. (3) in a
more general form:

qðr; tÞ @xAðr; tÞ
@t

¼ �r � jAðr; tÞ þ SAðr; tÞ ð4Þ

where q is the mass density of the system, xA is the mass fraction of
the diffusing species, and jA is mass flux. For binary diffusion, this
flux is

jAðr; tÞ ¼ �qðr; tÞDABrxAðr; tÞ ð5Þ

Eq. (5) was derived solely for the description of the steady-state
molecular transport via diffusion of one molecular species through
another [19]. Such a system is presented in Fig. 1, where species A
is represented by the small particles and species B is represented
by the large particles. The system consisting of species A and spe-
cies B is enclosed by a third material (a solid), species C, repre-
sented by the brick-like pattern in Fig. 1. Over time, the
interactions between the various molecules in the system pre-
sented in Fig. 1 will cause the distribution of small particles to be-
come more uniform. It is the nature of the interaction between the
molecules in the system that determines the value of the diffusion
coefficient in Eqs. (3)–(5).

Consider a modified version of the scenario represented by
Fig. 1 in which the large particles (species B) are removed from
the system and the enclosing material (species C) is reshaped so
that a small pathway or crack exists through which species A can
freely ‘‘diffuse”. This scenario is represented graphically in Fig. 2.
In this case, the transport of species A through this pathway is
not accurately described by Eqs. (3)–(5). Instead, species A is



Fig. 2. Transport of molecules of species A (small particles) through nano-pathways
within species C (species C is a solid represented by the brick-like pattern).
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essentially diffusing through the vacuum within the crack, and DAB

does not apply to diffusion of species A through a vacuum. In such a
situation, another model must be used to more accurately quantify
the transport of species A through the crack in species C.

Determining the flux of a molecular species through a small
pathway has been a classic topic of interest in the kinetic theory
of gases. Fig. 3 is a simple schematic used as a point of reference
for this classic problem. In large part, the focus of previous work
on this topic has been on pathways that are straight and have a cir-
cular cross-section. The symmetries involved in straight circular
pathways allow for analytical treatment of molecular transport
through them. A classic summary of theoretical work describing
flow of rarefied gases through straight circular tubes of various
lengths was created by Clausing, who concluded that free-molecu-
lar flow through such a pathway could be described as [21]

K1 ¼W1S1I1 ð6Þ

where K1 is the number of molecules per second traveling through
the pathway from the first vessel to the second vessel, S1 is the
cross-sectional area of the entrance to the pathway from the first
vessel, I1 is the number of molecules which in one second strike a
unit area of the wall of the first vessel (it is assumed that the path-
way connects two vessels, one from which the molecules originate,
and one into which they are transferred as shown in Fig. 3), and W1

is a transmission probability (probability that a given particle that
enters the pathway from the first vessel will make it through the
pathway to the second vessel instead of being reflected back into
the first vessel).

Eq. (6) can be transformed into an equation for mass flux by
multiplying it by the molecular mass, m, of the molecules being
transferred through the tube

jA ¼ mK1 ¼ mW1S1I1 ð7Þ

Eq. (7) can be used along with some fundamentals from the ki-
netic theory of gases to provide a method for predicting the mass
flux of a given species through nano-pathways in nuclear materi-
als. From the kinetic theory of gases, it is known that for a given
Fig. 3. Schematic used to describe the system of transport for a molecular species
from vessel 1 on the left to vessel 2 on the right. Here, ni represents the number
density of the molecules, Ti represents the temperature, and Pi represents the
pressure.
system, the number of gas molecules striking a surface of unit area
per unit time within a containment vessel is given by the equation
[22]

I1 ¼
n1�m1

4
ð8Þ

where [23]

�m1 ¼
8kT1

pm

� �1=2

ð9Þ

In Eqs. (8) and (9), n is the number density of the molecules
being transported, T is the temperature of the system, and k is
the Boltzmann constant. Eqs. (7)–(9) can be combined to yield

jA ¼
1
4

mW1S1n1
8kT1

pm

� �1=2

ð10Þ

Including transfer of molecules from vessel 2 to vessel 1, the net
flow rate becomes:

jA ¼
1
4

mW1S1n1
8kT1

pm

� �1=2

� 1
4

mW2S2n2
8kT2

pm

� �1=2

ð11Þ

In the case that T1 = T2 = T, S1 = S2 = S, and W1 = W2 = W, Eq. (11) col-
lapses to

jA ¼
1
4

mWS
8kT
pm

� �1=2

ðn1 � n2Þ ð12Þ

If the gradient is explicitly written out for the one-dimensional,
scalar version of Eq. (5) describing flow through a system as dis-
played in Fig. 2 or Fig. 3, the result is

jA ¼
�mDA

L
ðnA;1 � nA;2Þ ð13Þ

where L is the distance between regions 1 and 2 and DA now repre-
sents the diffusion of species A through a vacuum as the presence of
species B has been eliminated. If multiple pathways are present in-
stead of only one, then the mass flux through the system of path-
ways should equal the right-hand-side of Eq. (12) multiplied by
the number of pathways present in the system (assuming all path-
ways are identical). Such a system would be analogous to a contin-
uous system in which Darcy’s Law is applicable as discussed in the
introduction.

Eqs. (12) and (13) appear similar to the extent that each is the
product of a leading term and the difference in the number density
of species A between regions 1 and 2. Setting Eq. (12) equal to Eq.
(13) and solving for the diffusion coefficient leads to

DA ¼
1
4

LWS
8kT
pm

� �1=2

ð14Þ

Thus, for a given system, the closer DAB is to DA, the closer the
results from the two approaches will be. In some cases, the results
of the two approaches may be indistinguishable. However, in cases
where traditional diffusion equations fail, use of Eqs. (10)–(14)
may be valuable. If the conditions of a given system are known,
then Eqs. (12)–(14) can be used to determine the mass flux through
a given pathway. However, the parameter that is almost certainly
not known for any given system is W, the transmission probability.

3. Modeling

The transmission probability W for some simple pathways can
be determined analytically [21–27], or numerically [23,28]. The
Monte Carlo method has also been used effectively, and a range
of useful results have been reported [28–31]. The characteristics
of the pathway that must be defined in order to employ such an



Fig. 5. Post-collision trajectory determination.
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algorithm are the pathway geometry, the initial particle trajectory,
the nature of intermolecular interactions, and the nature of mole-
cule–wall collisions. In the present work, to focus on the geometri-
cal complexities of the flows, the pathways were assumed small,
and intermolecular interactions were neglected. Scattering of mol-
ecules from the pathway walls after collisions was considered to be
diffuse and thus post-collision trajectories were assigned according
to the cosine law [27]. The initial position of a test molecule upon
entering the pathway is randomly selected from the cross-section
of the pathway entrance. The initial trajectory of the test molecule
is also taken from the cosine law. This algorithm was applied to
several relatively simple geometries in order to determine the
transmission probability W for the pathway. The results provide
insights into the role of various geometries in affecting the trans-
mission probability W.

3.1. Straight, right-cylindrical tubes of constant circular cross-section

We follow here an example from Bird [31] closely, and note that
Fig. 4 shows the angular entrance parameters that were used to
determine the point of entry and the trajectory of each test particle
at the beginning of the simulation. The value of u for each test par-
ticle was randomly selected from [0, 2p). The value of h for each
test particle was selected from Eq. (15), which is the cosine law
describing a particle that has just recoiled from a collision gov-
erned by diffuse reflection [27]. In Eq. (15), the parameter f is a
random number with a value between 0 and 1. The final parameter
value necessary to describe the initial position and trajectory of a
test particle is the radial distance from the tube center. In order
to make all radial distances equally probable, the value of this
parameter was chosen according to Eq. (16), where R is the radius
of the tube.

h ¼ cos�1ð
ffiffiffi
f

p
Þ ð15Þ

r ¼ Rð
ffiffiffi
f

p
Þ ð16Þ

Particles were assumed to follow straight trajectories described by

fx; y; zg ¼ fx0; y0; z0g þ fu0; m0;w0gt ð17Þ

where x0; y0; z0 are the initial spatial coordinates of the test particle
and u0; m0;w0 are the initial velocity components of the test particle.
For the current simulations, the directional properties of the veloc-
ity are important, but the actual magnitude of the velocity is irrel-
evant since the desired result is only the transmittance and not the
time associated with it. At any given time during the test, the dis-
tance of the test particle from the central axis of the tube is given
by Eq. (18), where it is assumed that the tube central axis is aligned
with the x-axis. A particle–wall collision is determined to have oc-
curred when the value of the parameter d in Eq. (18) equals the ra-
dius of the tube.
Fig. 4. Angular entrance parameters h and u.
d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy0 þ m0tÞ2 þ ðz0 þw0tÞ2

q
ð18Þ

After a particle–wall collision, it is necessary to determine the
new trajectory of the particle. Since diffuse scattering is assumed,
it is necessary that the chosen trajectory be consistent with the co-
sine law. The first step in assigning such a trajectory is to construct
an inward-pointing unit vector that is normal to the wall at the
point of impact. For the case currently under consideration, this
vector is constructed by placing its tail on the point of impact
{xc, yc, zc} (where the subscript ‘‘c” refers to ‘‘collision”), placing
its head on the point {xc, 0, 0}, and dividing the vector magnitude
by the radius of the tube. This translates mathematically into
Fig. 7. Important parameters associated with an elliptical tube.
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n ¼ fxc; 0;0g � fxc; yc; zcg
R

ð19Þ

The post-collision trajectory of the test particle is determined
by subsequent rotations along angular parameters analogous to
those shown in Fig. 4. Fig. 5 shows the orientation of these param-
eters as applicable to the description of post-collision trajectory
determination.

The inward-pointing unit normal vector n is rotated in the radial
plane by an angular value of h that is selected according to Eq. (15).
This rotation is performed with the aid of the rotation matrix [32]
Table 1
Visualization of geometries for the helical parameters considered in this study.

L/R = 0.1 L/R = 1

a = 1
b = 1

a = 2
b = 1

a = 3
b = 1

a = 1
b = 2

a = 2
b = 2

a = 3
b = 2

a = 1
b = 3

a = 2
b = 3

a = 3
b = 3
RxðhÞ ¼
1 0 0
0 cos h � sin h

0 sin h cos h

0
B@

1
CA ð20Þ

The rotation of the unit vector, n, by Rx(h) results in the vector r
that appears in Fig. 5. The vector representing the desired post-col-
lision trajectory is then created by rotating the vector r according
to [33]
r0 ¼ r cos uþ nðn � rÞð1� cos uÞ þ ðr � nÞ sin u ð21Þ
L/R = 5 L/R = 10



Table 2
W and RMC for straight cylindrical tubes.

L/R Present results RMC of present results Results in [21]

0.1 0.9525 0.0024 0.9524
1 0.6701 0.0070 0.6720
5 0.3089 0.0133 0.3146
10 0.1928 0.0178 0.1973

Table 3
W and RMC for straight conical tubes.

L/R0 Present results RMC of present results Results in [30]

a = 1� 0.1 0.9532 0.0019 0.9541
1 0.6882 0.0066 0.6854
5 0.3421 0.0153 0.346

10 0.2322 0.0186 0.2368

a = 30� 0.1 0.987 0.0012 0.9869
1 0.9325 0.0027 0.9334
5 0.9067 0.0036 0.9081

10 0.9055 0.0036 0.9061

a = 60� 0.1 0.999 0.0004 0.9986
1 0.9955 0.0007 0.9959
5 0.9951 0.0007 0.9956

10 0.9949 0.0008 0.9956
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where u is randomly selected from [0,2p). With the new trajectory,
the particle is tracked through collisions until it exits the tube on
either side.

3.2. Straight conical tubes

The parameters of interest in tracking particles through a coni-
cal tube are displayed in Fig. 6. For the conical tube, initial particle
positions and velocities are chosen through the same method used
for choosing the initial particle parameters for straight cylindrical
tubes. The only difference between these two geometries is that
R0 (the radius of the conical tube at its entrance) is used in place
of R. Particle tracking is performed according to the same method
as was used for the straight cylindrical tubes except that a particle–
wall collision now occurs when d = R(x) to accommodate the
changing radius of the conical tube. Likewise, the R in Eq. (19) must
be replaced by R(x). After n is determined according to Eq. (19), it
must be rotated by the angle a in the axial direction in order to ob-
tain a unit vector normal to the conical surface at the point of im-
pact. Post-collision particle trajectories are then determined
according to the same method used for cylindrical tubes.

3.3. Straight elliptical tubes of constant cross-section

The parameters important for transport through an elliptical
tube are shown in Fig. 7. Since the entrance to this tube is not a cir-
cle, in order to determine a uniform particle-entrance profile,
acceptance/rejection techniques must be employed instead of Eq.
(16). The initial particle trajectory is still defined by the cosine law.

Since the elliptical tube does not have a constant radius, deter-
mining the location of molecule–wall collisions is more difficult. If
the semi-major axis is taken to lie on the y-axis and the semi-min-
or axis is taken to lie on the z-axis, then a molecule strikes the wall
of the elliptical tube when the radial position of the molecule at
any axial position is equal to {acosh, bsinh} where h is the angle be-
tween the line segment connecting the molecule position to the
tube center {0,0} and the semi-major axis. At any point on the
elliptical shell, the unit tangent vector is defined as

T ¼
@fa cos h; b sin hg

@hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða sin hÞ2 þ ðb cos hÞ2

q ¼ f�a sin h; b cos hgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða sin hÞ2 þ ðb cos hÞ2

q ð22Þ

Also, if the central curve around which the elliptical tube is con-
structed lies on the x-axis, then the vector {1,0,0} is a unit vector
that is normal to the unit tangent vector defined by Eq. (22). The
inward-pointing unit normal vector at the point of impact for a
molecule–wall collision is determined from the cross product of
this vector with the unit tangent vector. After this inward-pointing
unit normal vector is determined, then the same rotation proce-
dure that was used to determine the post-collision trajectory for
the molecule in cylindrical tubes is employed.

3.4. Helical tubes with constant circular cross-sections

The unique difficulty characteristic of helical tubes is that the
central axis is now three-dimensional and does not correspond
to a set coordinate-system axis. The central axis of a helix can be
described parametrically as

cða; b; sÞ ¼ ða cos s; a sin s; b sÞ ð23Þ

where a is the inner radius of the helix, b describes the separation
distance between the successive coils of the helix and s is the para-
metric variable. Due to the fact that the cross-sectional flow area of
the helix is a circle, the initial particle conditions that were used for
cylindrical and conical tubes can be used for the helix. A molecule–
wall collision can be determined to have occurred for flow through
a helix when the minimum distance between a molecule and the
central curve is equal to the radius (R) of the helical tube. The circu-
lar plane cutting perpendicularly through the helix at the point of
impact can then be treated as though it were a cross-sectional slice
of a cylindrical tube when finding the post-collision trajectories.
Due to the curvature of the helical tube, the parameter s does not
directly translate into the length of the tube. Instead, the helical
length is related to s by

L ¼
Z smax

0
jc0½s�jds ð24Þ

where c is defined by Eq. (23). The geometrical parameters of inter-
est for helices are a, b, L, and R (the radius of the tube). Table 1 gives
a visual survey of the effects of varying the values of any of these
parameters.

4. Results

The results of the various computational experiments described
in this paper for the values of W are presented in Tables 2–5. Pre-
viously published results for straight cylindrical and conical tubes
are presented for comparison in Tables 2 and 3 [21,30]. In Tables 1,
2 and 5, the value L/R is simply the ratio of the tube length to the
tube radius. This ratio is defined as L/R0 in Table 3 for conical tubes
where R0 is the radius at the tube entrance. For elliptical tubes in
Table 4, only the value of L is listed since an ellipse doesn’t have
a ‘‘radius.” The parameters ‘‘a” and ‘‘b” used to describe ellipses
in Table 4 represent the semi-major and semi-minor axes, respec-
tively as displayed in Fig. 7. For helical tubes in Table 4, the param-
eters ‘‘a” and ‘‘b” are defined in Eq. (23).

The computational experiments run in this work used the
Monte Carlo method and have associated with them the character-
istic relative error associated with this method. The relative error
RMC associated with the results of a simulation is defined as [34]

RMC ¼
rMC

lMC
ð25Þ

where rMC is the estimated standard deviation and lMC is the mean.
In order to generate values of the mean and standard deviations, a



Table 4
W and RMC for straight elliptical tubes.

L

0.1 1 5 10

b W RMC W RMC W RMC W RMC

a = 1 2 0.9606 0.0090 0.7205 0.0059 0.3762 0.0134 0.2427 0.0188
3 0.9657 0.0075 0.7257 0.0059 0.3990 0.0116 0.2644 0.0172
4 0.9693 0.0088 0.7590 0.0059 0.4181 0.0111 0.2744 0.0147

Table 5
W and RMC for helical tubes.

L/R

0.1 1 5 10

a W RMC W RMC W RMC W RMC

b = 1 1 0.9518 0.0019 0.6690 0.0045 0.2903 0.0060 0.0332 0.0069
2 0.9559 0.0021 0.6802 0.0038 0.2807 0.0045 0.0284 0.0045
3 0.9532 0.0019 0.6798 0.0039 0.3086 0.0040 0.0345 0.0037

b = 2 1 0.9529 0.0023 0.6729 0.0047 0.3082 0.0054 0.1841 0.0051
2 0.9481 0.0022 0.6690 0.0039 0.3047 0.0045 0.1872 0.0034
3 0.9530 0.0022 0.6781 0.0039 0.2982 0.0046 0.1764 0.0047

b = 3 1 0.9506 0.0018 0.6647 0.0036 0.3005 0.0063 0.1883 0.0052
2 0.9523 0.0020 0.6729 0.0035 0.3049 0.0040 0.1917 0.0040
3 0.9519 0.0020 0.6706 0.0036 0.3111 0.0051 0.1881 0.0036
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set of simulations composed of the same number of particle histo-
ries were run. The relative error is proportional to the number of
histories NMC through the relation

RMC /
1ffiffiffiffi
N
p

MC

ð26Þ

Eq. (26) can be used to determine a constant of proportionality
that can be used to determine the relative error associated with
simulations consisting of a large number of histories. The relation
thus eliminates the need to run several simulations consisting of
a large number of histories in order to determine the mean and
the standard deviation associated with the simulation. We note
that with relatively few particles (10,000), the Monte Carlo results
are in fair agreement with the numerical results obtained through
solutions of related integral equations [21,30].
5. Discussion and conclusions

The results for the transmission fraction W presented in Tables
2–5 can be largely explained with geometrical arguments. Geome-
tries that present a higher probability for particle–wall interactions
have a lower associated transmission fraction. This claim is most
readily seen in the results for straight, circular tubes presented in
Table 2. Since there is no change in the cross-sectional flow path
through the tube, the only geometrical variant is the length of
the tube. The longer the tube, the greater the probability that a test
particle will encounter the tube wall while traversing the path en-
closed by the tube. Another way to think of it is that a higher num-
ber of particle–wall collisions is expected for any test particle
flowing through a longer tube than one flowing through a shorter
tube.

The same geometrical argument just made for straight cylindri-
cal tubes is also valid for straight conical tubes, as is seen by the
results presented in Table 3. The results for conical tubes for which
a = 1 closely match the results for the corresponding tubes in Table
2, with the expected slight increase in the value of the transmission
fraction. As expected, this increase becomes more pronounced as
the value of a becomes larger. This is because as the value of a in-
creases, there is a lower probability of molecule–wall interactions,
and the unit normal to the wall at a point of impact is biased in a
direction that promotes transmission.

Elliptical tubes follow the same trend, for the most part. The
length of the tube seems to be the strongest influence on the trans-
mission factor. However, for a given tube length, the transmission
fraction determined for an elliptical tube in Table 4 is noticeably
higher (except for r/L � b/L = 0.1) than the transmission fraction
determined for the corresponding straight cylindrical tube in Table
2. This increased transmission fraction determined for the elliptical
tubes is somewhat misleading. For simplicity, the values of ‘‘a” and
‘‘b” used in this study were taken to be small integers. However, for
the results generated to be directly compared to the results in Ta-
ble 2, it would be necessary that the cross-sectional areas of the
corresponding elliptical and cylindrical tubes be the same. If the
length of a tube used in a simulation to generate values for Table
2 and the length of a tube used in a simulation to generate values
for Table 4 are the same, then the cross-sectional area of the cylin-
drical tube in each case will simply be Acs = pr2 = p12 = p. On the
other hand, for an elliptical tube with a = 1 and b = 2, Acs = 1 � 2 �
p = 2p. Likewise, for a = 1 and b = 3, Acs = 3p, and for a = 1, b = 4,
Acs = 4p. This increase in the cross-sectional flow area leads to
the relatively higher transmission fractions displayed in Table 4.
It is curious that an increase in the flow area of 2-, 3-, or 4-fold only
slightly increases the transmission fraction when comparing a
cylindrical tube to an elliptical tube. Thus, the increase in the as-
pect ratio of the elliptical tube must offset the increase in cross-
sectional flow area.

The most complex geometry considered in this study is the heli-
cal tube due to its three-dimensional curvature. The most notable
result for the simulations using helical tubes represented in Table 5
is the large decrease in the transmission fraction when moving
from a helical tube of length 5 to a helical tube of length 10 when
the value of ‘‘b” = 1. The reason for this phenomenon is once again
geometrical as is readily seen by scanning the images of the helices
studied depicted in Table 1.

Molecular transport through various materials is of interest in
the nuclear sciences and engineering. The computational experi-
ments presented in this paper provide some insight into how the
actual geometry of the matrix through which the molecules are
being transported may affect the observed experimental diffusion
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coefficients for these systems. Table 5, for instance, gives some
quantitative feel for how greatly the length of a helical pathway af-
fects the transmission fraction for tightly bound helices. In our
work we used Mathematica� which permitted convenient han-
dling of the geometries we considered, and which would also per-
mit similar convenient handling of more complicated geometries
that undoubtedly exist in nuclear materials. Extensions of the pres-
ent work to include such realistic conditions are currently in
progress.
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